Direct sum of irreducible representation
| A1 |
A2 |
E |
| 6 |
2 |
6 |
Properties of derivatives and isotopomers by single substitution, h(C3v)=6
| Atom Set* | Site Symmetry** | h(Site Symmetry) | Identical Atoms*** | Element | Chrial | Polar | Isotopomer |
|---|
| Isotope | Mass | Abundance**** |
|---|
| 1 | C3v |
6 | 1 | C | no | yes | 13C | 131.0816 | 0.9942 |
| 2 | C3v |
6 | 1 | H | no | yes | 2H | 131.0845 | 0.013947 |
| 3 | Cs |
2 | 3 | C | no | yes | 13C | 131.0816 | 2.9827 |
| 4 | C1 |
1 | 6 | C | yes | yes | 13C | 131.0816 | 5.9653 |
| 5 | Cs |
2 | 3 | H | no | yes | 2H | 131.0845 | 0.041841 |
| 6 | C1 |
1 | 6 | H | yes | yes | 2H | 131.0845 | 0.083681 |
| Total Number of Atoms: | 20 | ✅ Correct Number of Atoms found |
*Atom Orbit
**Subgroup of point group C
3v
***Calculated as h( C
3v)/h(Site Symmetry)
****Natural Abundance of single substituted Isotopomer in %
Numbers of isomers by substitution
| Replacement | Pattern | Achiral Isomers | Chiral Isomer Pairs |
| Single | X | 4 | 2 |
| Double | X2 | 14 | 25 |
| Double | XY | 12 | 58 |
| Triple | X3 | 36 | 174 |
| Triple | X2Y | 44 | 548 |
| Triple | XYZ | 24 | 1.128 |
| Quadruple | X4 | 77 | 773 |
| Quadruple | X3Y | 100 | 3.184 |
| Quadruple | X2Y2 | 158 | 4.766 |
| Quadruple | X2YZ | 108 | 9.636 |
| Quadruple | WXYZ | 24 | 19.368 |
| Quintuple | X5 | 144 | 2.514 |
| Quintuple | VWXYZ | 0 | 310.080 |
| Sextuple | X6 | 232 | 6.349 |
| Sextuple | UVWXYZ | 0 | 4.651.200 |
Further Reading
- P.W. Fowler, J. Chem. Soc. Faraday Trans. 91(15) 2241 (1995)
Isomer Counting using Point Group Symmetry
Representation Γ3N
Characters of reducible representation
| E |
2C3 |
3σv |
| 60 |
0 |
4 |