Reduction formula for point group C3v
Characters of input representation
| E |
2C3 (z) |
3 v |
| 7 |
1 |
3 |
Decomposition into Irreducible representations
| A1 |
A2 |
E |
| 3 |
0 |
2 |
Symmetric Powers of Representation
Characters of symmetric powers
Tensor Order |
E |
2C3 (z) |
3 v |
| 1 |
7 |
1 |
3 |
| 2 |
28 |
1 |
8 |
| 3 |
84 |
3 |
16 |
| 4 |
210 |
3 |
30 |
| 5 |
462 |
3 |
50 |
| 6 |
924 |
6 |
80 |
Decomposition into Irreducible representations
Tensor Order |
A1 |
A2 |
E |
| 1 |
3 |
0 |
2 |
| 2 |
9 |
1 |
9 |
| 3 |
23 |
7 |
27 |
| 4 |
51 |
21 |
69 |
| 5 |
103 |
53 |
153 |
| 6 |
196 |
116 |
306 |
Antisymmetric Powers of Representation
Characters of antisymmetric powers
Tensor Order |
E |
2C3 (z) |
3 v |
| 1 | 7 |
1 |
3 |
| 2 | 21 |
0 |
1 |
| 3 | 35 |
2 |
-5 |
| 4
| 35 |
2 |
-5 |
| 5
| 21 |
0 |
1 |
| 6
| 7 |
1 |
3 |
Decomposition into Irreducible representations
Tensor Order |
A1 |
A2 |
E |
| 1
| 3 |
0 |
2 |
| 2
| 4 |
3 |
7 |
| 3
| 4 |
9 |
11 |
| 4
| 4 |
9 |
11 |
| 5
| 4 |
3 |
7 |
| 6
| 3 |
0 |
2 |
Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement