The molecular potential energy surface V can be expressed in terms of normal coordinates q_{r}.

$$
\begin{align*}
V & =\frac{1}{2} \sum_{r} \omega_{r} q_{r}^{2}+\frac{1}{6} \sum_{r s t} \phi_{r s t} q_{r} q_{s} q_{t}+\frac{1}{24} \sum_{r s t u} \phi_{r s t u} q_{r} q_{s} q_{t} q_{u}+\ldots \tag{1}\\
V & =\frac{1}{2} \sum_{r} \omega_{r} q_{r}^{2}+\frac{1}{6} \sum_{r s t} k_{r s t} q_{r} q_{s} q_{t}+\frac{1}{24} \sum_{r s t u} k_{r s t u} q_{r} q_{s} q_{t} q_{u}+\ldots \tag{2}
\end{align*}
$$

The number of force constants ϕ and k up to the quartic force field are given in columns 1 and 2 . Only totally symmetrical force constants can be non-zero. The number of nonvanishing force constants k is given in the third column. (For optimized structures all first derivatives are zero. Since the normal coordinates are determinded by diagonalization of the force constant matrix the coupling constants $\phi_{i j}$ and $k_{i j}$ $(i \neq j)$ are all zero. This simplifies the expression for V to the form given in equations (1) and (2).

