Point Group





Additional information

Number of symmetry elements h = 0
Number of classes, irreps n = 0
Abelian group yes
Optical Isomerism (Chirality) no
Polar no
Parity no


Reduce representation to irreducible representations





Genrate representation from irreducible representations






Direct products of irreducible representations


Binary products

Ternary Products
Quaternary Products



Spherical harmonics and Multipoles
Symmetric Powers of Γxyz


Spherical Harmonics Yl / Multipole Symmetric Power [Γl(xyz)]
l 2l+1 Multipole Symmetry Rank l(xyz)]
s (l=0) 1 Monopole 1
p (l=1) 3 Dipole 3
d (l=2) 5 Quadrupole 6
f (l=3) 7 Octupole 10
g (l=4) 9 Hexadecapole 15
h (l=5) 11 Dotricontapole 21
i (l=6) 13 Tetrahexacontapole 28
j (l=7) 15 Octacosahectapole 36
k (l=8) 17 256-pole 45
l (l=9) 19 512-pole 55
m (l=10) 21 1024-pole 66
n (l=11) 23 2048-pole 78
o (l=12) 25 4096-pole 91
More

First nonvanshing multipole: Monopole

Further Reading

  • A. Gelessus, W. Thiel, W. Weber. J. Chem. Educ. 72 505 (1995)
    Multipoles and symmetry




Ligand Field, dn term splitting


Term symbols for electronic configurations dn
dn Term Symbols
d1 = d9 2D
d2 = d8 1S, 1D, 1G, 3P, 3F
d3 = d7 2P, 2D (2), 2F, 2G, 2H, 4P, 4F
d4 = d6 1S (2), 1D (2), 1F, 1G (2), 1I, 3P (2), 3D, 3F (2), 3G, 3H, 5D
d5 2S, 2P, 2D (3), 2F (2), 2G (2), 2H, 2I, 4P, 4D, 4F, 4G, 6S


Term splitting in point group
L 2L+1 Term Splitting
S (L=0) 1
P (L=1) 3
D (L=2) 5
F (L=3) 7
G (L=4) 9
H (L=5) 11
I (L=6) 13


Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement