S10 | E | C5 | (C5)2 | (C5)3 | (C5)4 | i | (S10)7 | (S10)9 | S10 | (S10)3 | rotations |
functions |
functions |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | Rz | z2, x2+y2 | - |
E1g | +1 +1 |
+ +* | +2 +2* | +2* +2 | +* + |
+1 +1 |
+ +* |
+2 +2* |
+2* +2 |
+* + |
Rx+iRy Rx-iRy |
(xz, yz) | - |
E2g | +1 +1 |
+2 +2* | +* + | + +* | +2* +2 |
+1 +1 |
+2 +2* |
+* + |
+ +* |
+2* +2 |
- | (x2-y2, xy) | - |
Au | +1 | +1 | +1 | +1 | +1 | -1 | -1 | -1 | -1 | -1 | z | - | z3, z(x2+y2) |
E1u | +1 +1 |
+ +* | +2 +2* | +2* +2 | +* + |
-1 -1 |
- -* |
-2 -2* |
-2* -2 |
-* - |
x+iy x-iy |
- | (xz2, yz2) [x(x2+y2), y(x2+y2)] |
E2u | +1 +1 |
+2 +2* | +* + | + +* | +2* +2 |
-1 -1 |
-2 -2* |
-* - |
- -* |
-2* -2 |
- | - | [xyz, z(x2-y2)] [y(3x2-y2), x(x2-3y2)] |
Number of symmetry elements | h = 10 |
Number of irreducible representations | n = 10 |
Number of real irreducible representations | n = 6 |
Abelian group | yes |
Number of subgroups | 2 |
Subgroups | Ci , C5 |
---|---|
Optical Isomerism (Chirality) | no |
Polar | no |
dipole (p) | Au+E1u |
---|---|
quadrupole (d) | Ag+E1g+E2g |
octopole (f) | Au+E1u+2E2u |
hexadecapole (g) | Ag+2E1g+2E2g |
32-pole (h) | 3Au+2E1u+2E2u |
64-pole (i) | 3Ag+3E1g+2E2g |
128-pole (j) | 3Au+3E1u+3E2u |
256-pole(k) | 3Ag+3E1g+4E2g |
512-pole (l) | 3Au+4E1u+4E2u |