Grouptheoretical Analysis




Composition Input Structure


Atomic
Number
Atomic
Symbol
Isotope Isotope
Mass
Isotope
Abundance
Number
Atoms
Mass
1H11.007899.98442020.1565
6C1212.000098.900020240.0000
Total40 260.1565
Isotopomer Natural Abundance (%)79.9044


Determined Point Group: Ih








Representation ΓN


Characters of reducible representation
E 12C5 12(C5)2 20C3 15C2 i 12S10 12(S10)3 20S6 15σd
40 0.000 0.000 4 0 0 0.000 0.000 0 8

Direct sum of irreducible representation
Ag T1g T2g Gg Hg Au T1u T2u Gu Hu
2 0 0 2 2 0 2 2 2 0



Properties of derivatives and isotopomers by single substitution, h(Ih)=120
Atom Set*Site Symmetry**h(Site Symmetry)Identical Atoms***ElementChrialPolarIsotopomer
IsotopeMassAbundance****
1 C3v 620Cnoyes13C261.159917.7745
2 C3v 620Hnoyes2H261.16280.2493
Total Number of Atoms:40✅ Correct Number of Atoms found
*Atom Orbit
**Subgroup of point group Ih
***Calculated as h( Ih)/h(Site Symmetry)
****Natural Abundance of single substituted Isotopomer in %


Numbers of isomers by substitution
ReplacementPatternAchiral
Isomers
Chiral
Isomer Pairs
SingleX20
DoubleX2124
DoubleXY148
TripleX34662
TripleX2Y74212
TripleXYZ84456
QuadrupleX4163712
QuadrupleX3Y2942.908
QuadrupleX2Y23964.420
QuadrupleX2YZ4348.924
QuadrupleWXYZ42018.072
QuintupleX54785.258
QuintupleVWXYZ1.680657.168
SextupleX61.28831.504
SextupleUVWXYZ5.04023.027.760

Further Reading

  • P.W. Fowler, J. Chem. Soc. Faraday Trans. 91(15) 2241 (1995)
    Isomer Counting using Point Group Symmetry




Representation Γ3N


Characters of reducible representation
E 12C5 12(C5)2 20C3 15C2 i 12S10 12(S10)3 20S6 15σd
120 0.000 -0.000 0 0 0 0.000 -0.000 0 8

Direct sum of irreducible representation
Ag T1g T2g Gg Hg Au T1u T2u Gu Hu
2 2 2 4 6 0 4 4 4 4

Molecular motions and force field analysis



Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement