Direct sum of irreducible representation
A |
E*
|
T |
3 |
1 |
4 |
Properties of derivatives and isotopomers by single substitution, h(T)=12
Atom Set* | Site Symmetry** | h(Site Symmetry) | Identical Atoms*** | Element | Chrial | Polar | Isotopomer |
---|
Isotope | Mass | Abundance**** |
---|
1 | T |
12 | 1 | C | yes | no | 13C | 73.0973 | 1.0504 |
2 | C3 |
3 | 4 | C | yes | yes | 13C | 73.0973 | 4.2017 |
3 | C1 |
1 | 12 | H | yes | yes | 2H | 73.1002 | 0.1768 |
Total Number of Atoms: | 17 | ✅ Correct Number of Atoms found |
*Atom Orbit
**Subgroup of point group T
***Calculated as h( T)/h(Site Symmetry)
****Natural Abundance of single substituted Isotopomer in %
Numbers of isomers by substitution
Replacement | Pattern | Chiral Isomers |
Single | X | 3 |
Double | X2 | 14 |
Double | XY | 24 |
Triple | X3 | 62 |
Triple | X2Y | 172 |
Triple | XYZ | 340 |
Quadruple | X4 | 212 |
Quadruple | X3Y | 800 |
Quadruple | X2Y2 | 1.204 |
Quadruple | X2YZ | 2.380 |
Quadruple | WXYZ | 4.760 |
Quintuple | X5 | 526 |
Quintuple | VWXYZ | 61.880 |
Sextuple | X6 | 1.052 |
Sextuple | UVWXYZ | 742.560 |
Further Reading
- P.W. Fowler, J. Chem. Soc. Faraday Trans. 91(15) 2241 (1995)
Isomer Counting using Point Group Symmetry
Representation Γ3N
Characters of reducible representation
E |
4C3 |
4(C3)2 |
3C2 |
51 |
0 |
0 |
-1 |