Grouptheoretical Analysis




Composition Input Structure


Atomic
Number
Atomic
Symbol
Isotope Isotope
Mass
Isotope
Abundance
Number
Atoms
Mass
1H11.007899.984477.0548
6C1212.000098.9000784.0000
Total14 91.0548
Isotopomer Natural Abundance (%)92.4485


Determined Point Group: D7h








Representation ΓN


Characters of reducible representation
E 2C7 2(C7)2 2(C7)3 7C'2 σh 2S7 2(S7)5 2(S7)3 v
14 0.000 0.000 0.000 2 14 0.000 0.000 0.000 2

Direct sum of irreducible representation
A'1 A'2 E'1 E'2 E'3 A''1 A''2 E''1 E''2 E''3
2 0 2 2 2 0 0 0 0 0



Properties of derivatives and isotopomers by single substitution, h(D7h)=28
Atom Set*Site Symmetry**h(Site Symmetry)Identical Atoms***ElementChrialPolarIsotopomer
IsotopeMassAbundance****
1 C2v 47Cnoyes13C92.05817.1977
2 C2v 47Hnoyes2H92.06110.1010
Total Number of Atoms:14✅ Correct Number of Atoms found
*Atom Orbit
**Subgroup of point group D7h
***Calculated as h( D7h)/h(Site Symmetry)
****Natural Abundance of single substituted Isotopomer in %


Numbers of isomers by substitution
ReplacementPatternAchiral
Isomers
Chiral
Isomer Pairs
SingleX20
DoubleX2100
DoubleXY140
TripleX3320
TripleX2Y840
TripleXYZ1560
QuadrupleX4820
QuadrupleX3Y2920
QuadrupleX2Y24500
QuadrupleX2YZ8640
QuadrupleWXYZ1.7160
QuintupleX51580
QuintupleVWXYZ17.1600
SextupleX62320
SextupleUVWXYZ154.4400

Further Reading

  • P.W. Fowler, J. Chem. Soc. Faraday Trans. 91(15) 2241 (1995)
    Isomer Counting using Point Group Symmetry




Representation Γ3N


Characters of reducible representation
E 2C7 2(C7)2 2(C7)3 7C'2 σh 2S7 2(S7)5 2(S7)3 v
42 0.000 0.000 -0.000 -2 14 0.000 -0.000 -0.000 2

Direct sum of irreducible representation
A'1 A'2 E'1 E'2 E'3 A''1 A''2 E''1 E''2 E''3
2 2 4 4 4 0 2 2 2 2

Molecular motions and force field analysis



Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement