Note on E representations in
C28 character table



26 irreducible representations of point group C28 have complex values. 13 two-dimensional real-valued representations E can be constructed as direct sum of the 13 pairs complex plus conjugate complex irreducible representation.

E1 = E1a ⊕ E1b
E2 = E2a ⊕ E2b
E3 = E3a ⊕ E3b
E4 = E4a ⊕ E4b
E5 = E5a ⊕ E5b
E6 = E6a ⊕ E6b
E7 = E7a ⊕ E7b
E8 = E8a ⊕ E8b
E9 = E9a ⊕ E9b
E10 = E10a ⊕ E10b
E11 = E11a ⊕ E11b
E12 = E12a ⊕ E12b
E13 = E13a ⊕ E13b


ε=exp(2πi/28)
C28 E C28 C14 (C28)3 C7 (C28)5 (C14)3 C4 (C7)2 (C28)9 (C14)5 (C28)11 (C7)3 (C28)13 C2 (C28)15 (C7)4 (C28)17 (C14)9 (C28)19 (C7)5 (C4)3 (C14)11 (C28)23 (C7)6 (C28)25 (C14)13 (C28)27
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
E1 E1a
E1b
1
1
ε*
ε*
ε2*
ε2*
ε3*
ε3*
ε4*
ε4*
ε5*
ε5*
ε6*
ε6*
i
-i
6*
6*
5*
5*
4*
4*
3*
3*
2*
2*
*
*
-1
-1
*
*
2*
2*
3*
3*
4*
4*
5*
5*
6*
6*
-i
i
ε6*
ε6*
ε5*
ε5*
ε4*
ε4*
ε3*
ε3*
ε2*
ε2*
ε*
ε*
E2 E2a
E2b
1
1
ε2*
ε2*
ε4*
ε4*
ε6*
ε6*
6*
6*
4*
4*
2*
2*
-1
-1
2*
2*
4*
4*
6*
6*
ε6*
ε6*
ε4*
ε4*
ε2*
ε2*
1
1
ε2*
ε2*
ε4*
ε4*
ε6*
ε6*
6*
6*
4*
4*
2*
2*
-1
-1
2*
2*
4*
4*
6*
6*
ε6*
ε6*
ε4*
ε4*
ε2*
ε2*
E3 E3a
E3b
1
1
ε3*
ε3*
ε6*
ε6*
5*
5*
2*
2*
*
*
4*
4*
-i
i
ε4*
ε4*
ε*
ε*
ε2*
ε2*
ε5*
ε5*
6*
6*
3*
3*
-1
-1
3*
3*
6*
6*
ε5*
ε5*
ε2*
ε2*
ε*
ε*
ε4*
ε4*
i
-i
4*
4*
*
*
2*
2*
5*
5*
ε6*
ε6*
ε3*
ε3*
E4 E4a
E4b
1
1
ε4*
ε4*
6*
6*
2*
2*
2*
2*
6*
6*
ε4*
ε4*
1
1
ε4*
ε4*
6*
6*
2*
2*
2*
2*
6*
6*
ε4*
ε4*
1
1
ε4*
ε4*
6*
6*
2*
2*
2*
2*
6*
6*
ε4*
ε4*
1
1
ε4*
ε4*
6*
6*
2*
2*
2*
2*
6*
6*
ε4*
ε4*
E5 E5a
E5b
1
1
ε5*
ε5*
4*
4*
*
*
6*
6*
ε3*
ε3*
ε2*
ε2*
i
-i
2*
2*
3*
3*
ε6*
ε6*
ε*
ε*
ε4*
ε4*
5*
5*
-1
-1
5*
5*
ε4*
ε4*
ε*
ε*
ε6*
ε6*
3*
3*
2*
2*
-i
i
ε2*
ε2*
ε3*
ε3*
6*
6*
*
*
4*
4*
ε5*
ε5*
E6 E6a
E6b
1
1
ε6*
ε6*
2*
2*
4*
4*
ε4*
ε4*
ε2*
ε2*
6*
6*
-1
-1
6*
6*
ε2*
ε2*
ε4*
ε4*
4*
4*
2*
2*
ε6*
ε6*
1
1
ε6*
ε6*
2*
2*
4*
4*
ε4*
ε4*
ε2*
ε2*
6*
6*
-1
-1
6*
6*
ε2*
ε2*
ε4*
ε4*
4*
4*
2*
2*
ε6*
ε6*
E7 E7a
E7b
1
1
i
-i
-1
-1
-i
i
1
1
i
-i
-1
-1
-i
i
1
1
i
-i
-1
-1
-i
i
1
1
i
-i
-1
-1
-i
i
1
1
i
-i
-1
-1
-i
i
1
1
i
-i
-1
-1
-i
i
1
1
i
-i
-1
-1
-i
i
E8 E8a
E8b
1
1
6*
6*
2*
2*
ε4*
ε4*
ε4*
ε4*
2*
2*
6*
6*
1
1
6*
6*
2*
2*
ε4*
ε4*
ε4*
ε4*
2*
2*
6*
6*
1
1
6*
6*
2*
2*
ε4*
ε4*
ε4*
ε4*
2*
2*
6*
6*
1
1
6*
6*
2*
2*
ε4*
ε4*
ε4*
ε4*
2*
2*
6*
6*
E9 E9a
E9b
1
1
5*
5*
4*
4*
ε*
ε*
6*
6*
3*
3*
ε2*
ε2*
i
-i
2*
2*
ε3*
ε3*
ε6*
ε6*
*
*
ε4*
ε4*
ε5*
ε5*
-1
-1
ε5*
ε5*
ε4*
ε4*
*
*
ε6*
ε6*
ε3*
ε3*
2*
2*
-i
i
ε2*
ε2*
3*
3*
6*
6*
ε*
ε*
4*
4*
5*
5*
E10 E10a
E10b
1
1
4*
4*
6*
6*
ε2*
ε2*
2*
2*
ε6*
ε6*
ε4*
ε4*
-1
-1
ε4*
ε4*
ε6*
ε6*
2*
2*
ε2*
ε2*
6*
6*
4*
4*
1
1
4*
4*
6*
6*
ε2*
ε2*
2*
2*
ε6*
ε6*
ε4*
ε4*
-1
-1
ε4*
ε4*
ε6*
ε6*
2*
2*
ε2*
ε2*
6*
6*
4*
4*
E11 E11a
E11b
1
1
3*
3*
ε6*
ε6*
ε5*
ε5*
2*
2*
ε*
ε*
4*
4*
-i
i
ε4*
ε4*
*
*
ε2*
ε2*
5*
5*
6*
6*
ε3*
ε3*
-1
-1
ε3*
ε3*
6*
6*
5*
5*
ε2*
ε2*
*
*
ε4*
ε4*
i
-i
4*
4*
ε*
ε*
2*
2*
ε5*
ε5*
ε6*
ε6*
3*
3*
E12 E12a
E12b
1
1
2*
2*
ε4*
ε4*
6*
6*
6*
6*
ε4*
ε4*
2*
2*
1
1
2*
2*
ε4*
ε4*
6*
6*
6*
6*
ε4*
ε4*
2*
2*
1
1
2*
2*
ε4*
ε4*
6*
6*
6*
6*
ε4*
ε4*
2*
2*
1
1
2*
2*
ε4*
ε4*
6*
6*
6*
6*
ε4*
ε4*
2*
2*
E13 E13a
E13b
1
1
*
*
ε2*
ε2*
3*
3*
ε4*
ε4*
5*
5*
ε6*
ε6*
i
-i
6*
6*
ε5*
ε5*
4*
4*
ε3*
ε3*
2*
2*
ε*
ε*
-1
-1
ε*
ε*
2*
2*
ε3*
ε3*
4*
4*
ε5*
ε5*
6*
6*
-i
i
ε6*
ε6*
5*
5*
ε4*
ε4*
3*
3*
ε2*
ε2*
*
*


Obviously the E representations are reducible. Nevertheless the E representations are treated often as irreducible representations and are called real-valued or pseudo irreducible representations. One should keep in mind that general statements for character tables fail for real-valued representations. For example:



Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement